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Least-Squares 101

 Using C0 nodal elements
 Avoiding inf-sup conditions
 Solving SPD systems
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 Conservation
 Conservation
 Conservation

We will show that
 Using nodal elements is not necessarily the best choice in LSFEM, and so it is
    arguably the least-important advantage attributed to least-squares methods

 By using other elements least-squares acquire additional conservation properties
 Surprisingly, this kind of least-squares turns out to be related to mixed methods
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Top 3 reasons people
want to do least squares: don’t want to do least squares:
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The Stokes system
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First-order velocity-vorticity-pressure (VVP) Stokes equations

Normal velocity-tangential vorticity condition
! 

pdx
"

# = 0

Function spaces and norms
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Exact sequence property: implied by domain assumptions
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Ω⊂R3 → bounded contractible domain
∂Ω  → Lipschitz continuous

Stay tuned for LSFEM with velocity BC
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A continuous least-squares principle (CLSP)
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A well-posed LSFEM is a slam dunk

Stability of the VVP system

Stability ⇒ LS Norm-equivalence

LS norm-equivalence ⇒ coercivity ⇒ unique least-squares solution.

 The LS solution coincides with the solution of the original VVP system.
 Any conforming discretization of the CLSP yields well-posed LSFEM
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 Talk is over, let’s have a beer!
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A straightforward conforming discrete least-squares principle (DLSP)
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 H1∩ H0(div)

H0(div)∩ H(curl)

The trouble with this DLSP
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Tangential continuity

Normal continuity
C0 continuity
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Why is this bad?

Costabel (1991) shows that unless Ω has smooth boundary or is a
convex polyhedron, H1∩ H0(div) may have

infinite co-dimension in H0(div)∩H(curl)

⇒ a C0 (nodal) finite element space may lose approximability
property in H0(div)∩H(curl), i.e., solution will not converge.

⇒ Mixed methods can solve this, but we have another approach…

On a second thought…maybe not

! 

J uh,"h , ph{ };f( ) = # $"h +#ph % f 0

2
+ # $uh %"h 0

2
+ # &uh 0

2

Xh ' H
0
(,div( ))H (,curl( ) $H0

(,curl( ) $H1 (( )) L
0

2 (( )

* 

+ 
, 

- , 



Computational mathematics and algorithms  

We gain some and loose some:
• div-conforming velocity: natural for the normal velocity boundary condition
• div-conforming velocity : not in the domain of curl -  need discrete approximation!

What to do about the velocity: Give up on u being curl-conforming

Back to the drawing board
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The LSFEM is already “semi-conforming” so why stop here?
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We gain some and loose some:
• discontinuous pressure: allows us to define “strongly compatible” method
• discontinuous pressure: not in the domain of grad -  need discrete approximation!
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Construction of semi-conforming LSFEM
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Ingredient 2: discrete curl and grad operators
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Valuable property (Discrete Friedrichs Inequality)
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Is the semi-conforming LSFEM any good?

Theorem (discrete stability)

! 

uh DC
* + "h C

+ ph G
* # C $ %"h +$h

*
ph

0

+ $h

*
%uh &"h

0

+ $ 'uh 0( )
! 

" uh,#h , ph{ }$ Xh =D
0

h %( ) &C0

h %( ) & S0
h %( )

Discrete Stability ⇒ Discrete Norm-equivalence

LS norm-equivalence ⇒ coercivity ⇒ unique least-squares solution.
 The LS solution coincides with the solution of a mimetic VVP system:! 
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Proof. Using compatible FE allows to repeat the proof from the continuous case!
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← divergence free velocity!

← “exact” momentum equation

← vorticity is discrete curl of velocity

This is why we call the method strongly mimetic!

← “redundant” equation implied by vorticity def..
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What about the accuracy?
Theorem
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Rates of convergence
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Order of the velocity depends on the kind of the vorticity space:

  

! 

X
h

=D
0

r"1
#C

0

r" # S
0

r"2
   or   D

0

r" #C
0

r" # S
0

r"1

! 

C
0

hIf       is Nedelec space of the 1st kind

  

! 

X
h

=D
0

r"1
#C

0

r
# S

0

r"2
   or   D

0

r" #C
0

r
# S

0

r"1

! 

C
0

hIf       is Nedelec space of the 2nd kind

! 

"p#"h

*
ph

0

$ Ch
r
"p

r
+ " %&

r( )Pressure is independent of the
kind of the vorticity space:



Computational mathematics and algorithms  

Connection with a mixed method

Seek                                                                                         such that
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Theorem
Consider the following mixed vorticity-velocity potential-pressure formulation:
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is solution of the strongly mimetic LSFEM.

• Similar (up to pressure space) to a mixed method by Girault (Math. Comp.51 1988)

• Requires basis for the orthogonal complement of the nullspace

• Characterization of               not as straightforward as that for  

• Strongly mimetic LSFEM is easier to implement 
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What about solving the equations?

The pressure equation can be solved independently

Vorticity and velocity can be computed from the following weak problems
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which are the Euler-Lagrange equations of a

curl-conforming div-conformingand

LSFEMS for two complementary div-curl systems.
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For clarity we explain the lowest-order case for the vorticity system

Discrete least-squares problem
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 the lowest-order Nedelec space of the 1st kind

 the lowest-order nodal C0 space
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where

AMG solver for this system is available as a subsolver of the eddy current AMG in
Bochev, Hu, Tuminaro and Siefert, SISC 2008.

Note: Can use any O(h)
approximation for
We will use mass lumping.
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We now have efficient AMG for these problems!
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Conclusions

Even in least-squares:

Compatibility pays  and there’s no free lunch

 Compatible FE allow to formulate LSFEMs for the Stokes equations with
– Divergence-free velocity
– Discrete momentum equation
– Proper relationships between the variables (“redundant” equation)
– Robust even for rough solutions

 Forming and solving the resulting linear systems requires advanced tools:
– Formally linear systems include inverse mass matrix
– The div-curl systems require sophisticated AMG solver

But we can have a beer now!
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